Блог - Параллели домашнего уюта


19:33
МАТЕМАТИКА И ЛОГИКА

Можно ли математику свести к логике, не обращаясь предварительно к тем принципам, которые ей, математике, свойственны? Существует школа математиков, которая со всей страстью и верой в дело стремится доказать это. Она выработала специальный язык, в котором нет больше слов, а имеются одни только знаки. Этот язык понятен только немногим посвященным, так что профаны склонны преклоняться перед категорическими утверждениями горячих адептов. Небесполезно, однако, ближе исследовать эти утверждения, чтобы убедиться, насколько оправдывается тот категорический тон, с которым они высказываются.

Но чтобы понять сущность вопроса, необходимо познакомиться с историческими деталями дела и в особенности вспомнить характер работ Кантора.

Понятие бесконечности уже давно было введено в математику. Но эта бесконечность была такой, какую философы называют потенциальной. В математике бесконечность обозначала количество, способное расти выше или ниже какого бы то ни было предела; это было изменяющееся количество, о котором можно было сказать, что оно перейдет все пределы, но нельзя было сказать, что оно их перешло. Кантор решил ввести в математику актуальную бесконечность, т. е. количество, не только способное перейти все пределы, но уже перешедшее через них. Он поставил себе вопросы вроде следующих: существует ли больше точек в пространстве, чем целых чисел? Существует ли больше точек в пространстве, чем точек на плоскости? И так далее.

Число целых чисел, число точек в пространстве и т. д. составляет то, что Кантор назвал кардинальным трансфинитным числом, т. е. таким количественным числом, которое больше всех обыкновенных количественных чисел. Кантор затем занялся сравнением этих кардинальных трансфинитных чисел. Размещая в соответствующем порядке элементы в совокупности, составленной из бесконечного числа таких элементов, он изобрел так называемые порядковые трансфинитные числа, на которых я не буду здесь останавливаться.

Многие математики последовали за Кантором и поставили ряд аналогичных вопросов. Они в такой степени освоились с трансфинитными числами, что готовы поставить теорию конечных чисел в зависимость от теории кардинальных чисел Кантора. По их мнению, чтобы вести преподавание арифметики по действительно логическому методу, необходимо начать с установления общих свойств кардинальных трансфинитных целых чисел, а затем выделить из них очень небольшой класс обыкновенных целых чисел. Этим способом можно было бы достигнуть цели, т. е. доказать все предложения, относящиеся к этому небольшому классу (т. е. всю нашу арифметику и нашу алгебру), не прибегая ни к какому началу, лежащему вне логики.

Этот метод, очевидно, противоречит всякой здоровой психологии. Конечно, не этим путем шел человеческий ум, создавая математику; и адепты нового метода, я полагаю, не думают ввести его на ступени среднего образования. Но по крайней мере логичен ли этот метод или, лучше сказать, безошибочен ли он? В этом можно усомниться.

Однако геометры, пользовавшиеся этим методом, очень многочисленны. Они собрали массу формул. Написав мемуары, в которых формулы не чередовались со словесными объяснениями, как это делается в обыкновенных математических книгах, а в которых, следовательно, такие объяснения совершенно отсутствуют, они вообразили, что освободились от всего того, что не представляет собой чистой логики. К несчастью, они пришли к противоречивым результатам. Это так называемые антиномии Кантора, к которым мы еще вернемся. Эти противоречия, однако, их не обескуражили, и они попытались внести такие изменения в свои правила, при которых обнаружившиеся уже противоречия исчезли; но мы при этом не приобрели уверенности в том, что не обнаружатся новые противоречия.

Настало время для справедливой оценки этих преувеличений. Я не надеюсь убедить упомянутых математиков: слишком долго дышали они своей атмосферой. Да и, кроме того, если вы опровергли одно из их доказательств, вы можете быть уверены, что оно возродится лишь в слегка измененном виде. Некоторые из доказательств уже несколько раз возрождались из пепла, наподобие той лернейской гидры (1),y которой вырастали новые головы. Геркулес выпутался из затруднения, потому что его гидра имела девять голов, если не одиннадцать; но здесь слишком много голов: они имеются в Англии, в Германии, в Италии, во Франции, и Геркулес должен был бы отказаться от состязания. Я обращаюсь поэтому только к непредубежденным людям, обладающим здравым смыслом.

I

В последние годы появилось много трудов, посвященных чистой математике и философии математики, имевших своей задачей выделить и изолировать логические элементы математического рассуждения. Эти труды были ясно изложены и исследованы в работе Кутюра, озаглавленной: «Основания математических наук».

По мнению Кутюра, новейшие труды, в особенности работы Рассела и Пеано, окончательно разрешили давний спор между Лейбницем и Кантом (2). Они показали, что не существует синтетического априорного суждения (этим именем Кант называл суждения, которые не могут быть ни доказаны аналитически, ни сведены к тождествам, ни установлены экспериментально); они показали, что математические науки целиком могут быть сведены к логике и что интуиция не играет в них никакой роли.

Все это Кутюра изложил в названном выше сочинении. Еще отчетливее высказал он это в речи, произнесенной на юбилее Канта, высказал так убедительно, что мой сосед сказал в полголоса: «мы видим ясно, что истекло столетие со дня смерти Канта».

Можем ли мы подписаться под этим решительным приговором? Я этого не думаю и постараюсь ниже показать, почему я этого не думаю.

II

Что нам сразу бросается в глаза в новой математике, так это ее чисто формальный характер, «Вообразим, — говорит Гильберт, — три рода вещей, которые мы назовем точками, прямыми и плоскостями; условимся, что прямая будет определяться двумя точками, и вместо того, чтобы сказать, что данная прямая определяется данными двумя точками, мы будем говорить, что она проходит через эти две точки или что эти две точки расположены на этой прямой». Что это за вещи, мы не только не знаем, но и не должны стремиться узнать. Нам этого не нужно, и всякий, кто никогда не видел ни точки, ни прямой, ни плоскости, так же легко мог бы построить геометрию, как и мы. Слова «проходят через» или «расположены на» не должны вызывать у нас никакого образа, ибо первые являются синонимом слова «определяться», вторые — синонимом слова «определять».

Таким образом, для доказательства теоремы не нужно и даже бесполезно знать, что она хочет сказать. Геометра можно было бы заменить «логической машиной», выдуманной Стенли Джевонсом. Или, если угодно, можно было бы выдумать машину, в которую через один конец были бы введены аксиомы, а в другом конце ее были бы собраны теоремы, наподобие той легендарной машины в Чикаго, в которую вкладывают живых поросят и из которой извлекают окорока и сосиски. Математик, как и эта машина, отнюдь не должен понимать, что он делает.

Я не ставлю в вину Гильберту этот формальный характер его геометрии. Он должен был прийти к ней, разрешая ту проблему, которую он себе ставил. Он хотел довести до минимума число основных аксиом геометрии и перечислить их все без остатка. Но в тех суждениях, в которых наш ум обнаруживает активность, в которых интуиция еще играет роль, трудно отделаться от внесения постулата или аксиомы, которые незаметно входят в суждение. Лишь в случае, если бы все геометрические суждения приняли чисто механическую форму, Гильберт мог бы быть уверенным в том, что он исполнил свое намерение и успешно закончил свою задачу.

То, что Гильберт сделал в геометрии, другие захотели сделать в арифметике и в анализе. Однако если бы они в этом даже и успели, то разве кантианцы были бы осуждены на полное молчание? Может быть, и нет, ибо когда мы сообщаем математической мысли пустую форму, эта мысль, конечно, подвергается искажению. Допустим даже, что удалось установить, что все теоремы могут быть выведены из конечного числа аксиом путем чисто аналитических приемов, путем простых логических комбинаций, и что эти аксиомы суть не что иное, как соглашения. Философ, однако, сохранил бы за собой право исследовать происхождение этих условий и определить, почему эти условия оказались предпочтительными перед противоположными им.

Кроме того, не одна только логическая правильность суждений, ведущих от аксиом к теоремам, должна нас занимать. Разве вся математика исчерпывается правилами совершенной логики? Это было бы все равно, как если бы мы сказали, что все искусство шахматного игрока сводится к правилам хода пешек. Из всех построений, которые могут быть скомбинированы из материалов, доставляемых логикой, нужно сделать выбор. Настоящий геометр и производит этот выбор здраво, руководствуясь верным инстинктом или же некоторым смутным сознанием о — я не знаю какой именно — более глубокой и более скрытой геометрии, которая одна и составляет ценность воздвигнутого здания.

Искать происхождение этого инстинкта, изучать законы этой глубокой геометрии, которые чувствуются, но словесно не форму лируются — вот прекрасная задача для философов, которые не допускают, что логикой исчерпывается все. Но не на эту точку зрения хочу я стать, не так хочу я ставить вопрос. Инстинкт о котором мы только что говорили, необходим изобретателю, но на первый взгляд кажется, будто при изучении уже созданной науки можно обойтись и без него. И вот я хочу исследовать, можно ли, приняв однажды принципы логики, я уж не говорю открыть, но даже доказать все математические истины, не прибегая снова к интуиции.

III

На этот вопрос я однажды уже дал отрицательный ответ (см. «Наука и гипотеза», глава I). Должен ли я этот ответ изменить ввиду появившихся новых трудов? Если я в то время ответил отрицательно, то это потому, что «принцип совершенной индукции» казался мне, с одной стороны, необходимым для математика, а с другой стороны, не сводимым к логике. Известно, что этот принцип заключается в следующем.

«Если какое-либо свойство справедливо относительно числа 1 и если установлено, что оно справедливо относительно числа n+1, коль скоро оно справедлво относительно числа n, то оно будет верно для всех целых чисел».

В этом я по преимуществу видел математическое суждение. Я не хотел этим сказать, как некоторые это думали, что все математические суждения могут быть сведены к приложению этого принципа. Исследуя эти суждения ближе, можно заметить, что в них применяются многие другие аналогичные принципы, обладающие теми же существенными признаками. В их ряду принцип полной индукции является лишь простейшим, и вот почему я остановился на нем как на типичном.

Название принципа совершенной индукции, упрочившееся за этой формой суждения, не может быть признано правильным. Этот способ суждения представляет настоящую математическую индукцию, которая отличается от обыкновенной индукции только степенью своей достоверности.

IV

Определения и аксиомы

Существование подобных принципов ставит непримиримых логиков в затруднительное положение. Но как думают они выпутаться из него? Принцип полной индукции, говорят они, не есть аксиома в собственном смысле слова или априорное синтетическое суждение, он есть просто определение целого числа. Следовательно, этот принцип является простым соглашением. Чтобы разобраться в этой точке зрения, нужно подробнее исследовать отношения между определениями и аксиомами.

Обратимся сначала к статье Кутюра о математических определениях, появившейся в выходящем в Женеве журнале «Математическое образование». Мы найдем здесь различие между прямым определением и определением при помощи постулатов. «Определение при помощи постулатов, — говорит Кутюра, — применяется не к одному понятию, а к системе понятий; оно заключается в перечислении основных соотношений, их связывающих и позволяющих доказать все прочие их свойства; эти соотношения и суть постулаты»...

Если предварительно были определены все эти понятия, за исключением одного, то это последнее и будет по определению тем объектом, который проверяет эти постулаты.

Итак, некоторые недоказуемые аксиомы математики суть лишь скрытые определения. Такая точка зрения часто правомерна, и я сам ее принял, когда шел вопрос, например, о постулате Евклида. Другие аксиомы геометрии недостаточны для полного определения расстояния между двумя точками. Ввиду этого из всех величин, удовлетворяющих этим остальным аксиомам, расстояние будет по определению той именно величиной, которая удовлетворяет постулату Евклида.

Так вот логики в применении к принципу совершенной индукции допускают то же самое, что я допускаю относительно постулата Евклида; они хотят видеть в этом принципе только скрытое определение.

Но они вправе это сделать лишь при двух условиях. Стюарт Милль сказал, что всякое определение заключает в себе одну аксиому, а именно ту, которая утверждает существование определяемого объекта. В таком случае не аксиома будет скрытым определением, а, напротив, определение будет скрытой аксиомой. Милль понимал слово «существование» в эмпирическом и материальном смысле слова. Он хотел сказать, что, определяя крут, утверждают тем самым, что в природе имеются круглые предметы. В таком виде его мнение неприемлемо. Математика не зависит от существования материальных объектов. В математике слово «существующее» имеет только один смысл и обозначает: «свободное от противоречия». При такой поправке мысль Стюарта Милля становится точной; определяя какой-нибудь объект, мы утверждаем, что определение не заключает противоречия.

Если, следовательно, мы имеем систему постулатов и если мы можем доказать, что эти постулаты не заключают противоречия, то мы вправе рассматривать их как определения одного из тех понятий, которые фигурируют в этой системе предложений. Если мы этого доказать не можем, то мы допускаем понятие без доказательства. Тогда мы имеем аксиюму; и если мы искали определение в постулатах, то мы обратно находим аксиому в определении.

Чаще всего, для того чтобы доказать, что определение не заключает противоречия, прибегают к методу примеров: пытаются создать пример предмета, удовлетворяющий определению. Возьмем определение, выражаемое при помощи постулатов. Мы хотим определить понятие А и говорим, что, согласно определению, А есть всякий предмет, для которого известные постулаты истинны. Если мы можем прямо доказать, что все эти постулаты истинны дли известного предмета В, то определение будет оправдано, и предмет В будет примером понятия А. Мы будем уверены, что постулаты непротиворечивы, так как имеются случаи, в которых все они оказываются истинными.

Но такое прямое доказательство при помощи примера не всегда возможно.

Чтобы установить, что постулаты не содержат в себе противоречия, нужно рассмотреть все предложения, которые могут быть выведены из данных постулатов как посылок, и показать, что среди этих предложений нет двух, противоречащих друг другу. Если число этих предложений конечное, то прямая проверка возможна. Но такой случай и встречается редко, и интереса не представляет.

Если же число этих предложений оказывается неограниченным, то прямая проверка уже невозможна. Тогда необходимо обратиться к таким способам доказательства, в которых вообще нельзя обойтись без принципа полной индукции, т. е. того принципа, кото-рый именно и надлежит проверить.

Мы указали на одно условие, которому логики должны были удовлетворить, и мы увидим ниже, что они ему не удовлетворили.

V

Есть еще другое условие. Если мы даем определение, то мы делаем это для того, чтобы им пользоваться.

В пределах некоторого рассуждения, например, мы неоднократно встречаемся с определяемым словом. Возникает вопрос: вправе ли мы в отношении к предмету, который мы в этом рассуждении называем нашим термином, утверждать тот постулат, который послужил для его определения? Очевидно, вправе, если термин сохранил свой смысл, если мы неявно (implicite) не приписали ему другого значения. Но иногда такое изменение смысла имеет место и при этом чаще всего остается незамеченным. Необходимо убедиться, каким путем это слово проникло в наше рассуждение, не вошло ли оно в другом определении, отличающемся от того, которое было формулировано первоначально.

Это затруднение встречается во всех приложениях математического знания. Математическое понятие получило вполне чистое и строгое определение, которое не возбуждает никаких колебаний в чистой математике. Но, когда мы его применяем, например, к физическим наукам, тут мы уже имеем дело не с этим чистым понятием, но с конкретным предметом, который зачастую является лишь грубым образом этого понятия. Сказать, что этот предмет удовлетворяет, хотя бы приблизительно, определению, это значит высказать новую истину, которая может быть подтверждена только опытом и которая уже не имеет характера условного постулата.

Но то же затруднение встречается и в пределах чистой математики.

Вы даете тонкое определение числа. Но, однажды дав его, вы о нем больше не думаете, ибо в действительности не из этого определения вы узнали, что такое число, а вам это уже давно было известно; и когда в дальнейшем вы употребляете слово «число», вы приписываете ему такое же значение, какое ему дает первый встречный. Чтобы узнать, каково это значение и остается ли оно одним и тем же в той или другой фразе, необходимо проследить, что заставило вас заговорить о числе и ввести это слово в обе фразы. Я не буду больше здесь по этому поводу распространяться, так как нам еще представится случай вернуться к этому вопросу.

Итак, вот слово, которому мы явно (explicite) дали некоторое определение A; затем мы пользовались им в рассуждении таким образом, что неявно (implicite) внесли другое его определение В. Возможно, что оба определения обозначают одно и то же. Но самая эта возможность есть уже новая истина, которую нужно либо доказать, либо допустить как независимую аксиому.

Мы увидим ниже, что логики столь же мало удовлетворили второму условию, сколько первому.

VI

Определения числа чрезвычайно многочисленны и разнообразны; я отказываюсь даже перечислить имена авторов, давших эти определения. В этом нет ничего удивительного. Если бы одно из них было удовлетворительно, не было бы нужды в прочих. Если всякий новый философ, занимавшийся этим вопросом, считал необходимым изобрести другое определение, то это потому, что определения предшественников его не удовлетворяли, а не удовлетворяли они его потому, что он усматривал в них petitio principii (3).

Когда я читал труды, посвященные этой проблеме, я всегда испытывал чувство беспокойства; я ожидал, что натолкнусь на petitio principii, и если не встречал этой логической ошибки с самого начала, то всегда опасался, что просмотрел ее.

И это потому, что невозможно дать определение, не выражая его при помощи фразы; с другой стороны, трудно сказать фразу, не вводя в нее слова «число», или слова «несколько», или, наконец, какого-либо слова во множественном числе. И вот уже готова наклонная,плоскость; в каждое мгновение мы рискуем впасть в реtitio principii.

В дальнейшем я остановлюсь только на тех определениях, в которых petitio principii наиболее искусно скрыто.

VII

Пасиграфия

Символический язык, который создал Пеано, играет большую роль в новых исследованиях. Этот язык может оказать некоторые услуги, но мне кажется, что Кутюра приписывает ему такое преувеличенное значение, которое удивило бы и самого Пеано.

Существенным элементом в этом языке являются определенные алгебраические знаки, представляющие собой различные союзы; «если», «и», «или», «следовательно». Возможно, что эти знаки и удобны, но призваны ли они обновить всю философию — это совершенно другой вопрос. Трудно допустить, чтобы слово «если», изображенное при помощи знака Й , приобрело особенное свойство, которого оно не имело раньше.

Это изобретение Пеано названо было сначала пасиграфией, т. е. искусством писать математические трактаты, не употребляя ни одного слова из житейского словаря. Это название очень точно определяет и меру важности самого искусства. Но позже изобретению Пеано было предписано более высокое достоинство, и ему дали название логистики. Последнее слово, кажется, употребляется в военных школах для обозначения искусства квартирмейстера, искусства передвижения и распределения войск; но здесь нет никакого основания опасаться смешения понятий, и сразу видно, что новое слово выражает намерение революционизировать логику.

Применение нового метода можно видеть в математическом мемуаре Бурали-Форти, озаглавленном: «Вопрос о трансфинитных числах» и помещенном в XI томе «Rendiconti del Circolo Matematico di Palermo».

Я должен прежде всего сказать, что этот мсмуар чрезвычайно интересен, и потому именно беру его в качестве примера, что он является важнейшим из всех трудов, написанных на новом языке. К тому же и люди непосвященные легко могут его читать благодаря имеющемуся в нем междустрочному итальянскому переводу.

Важность этого мемуара заключается в том, что в нем дан первый пример тех антиномий, которые встречаются в изучении трансфинитных чисел и которые на протяжении нескольких лет приводили в отчаяние математиков. Цель настоящего мемуара, говорит Бурали-Форти, это показать, что могут быть два трансфинитных числа (порядковых) a и b, причем a не будет ни равно, ни больше, ни меньше b.

Пусть читатель будет спокоен; чтобы понять рассуждение, которое последует, ему нет необходимости знать, что такое порядковое трансфинитное число.

Между тем Кантор точно показал, что между двумя трансфинитными числами, как и между двумя конечными числами, не может быть другого отношения, кроме равенства либо неравенства в ту или другую сторону. Но не о сути этого мемуара хочу я здесь говорить, это увлекло бы меня далеко от моего предмета. Я хочу лишь заняться формой и задаюсь вопросом, много ли выиграл автор в строгости положений, применяя эту форму, и вознаграждает ли она за те усилия, которые писатель и читатель должны употребить.

Мы видим, что Бурали-Форти определяет число 1 следующим образом:

1 = iT '{KoЗ(u, h )e(ueUn)}

Это определение в высшей степени подходит для того, чтобы дать представление о числе 1 тем лицам, которые никогда о нем ничего не слышали!

Я слишком мало понимаю приверженцев Пеано, чтобы рискнуть его критиковать; но я опасаюсь, что это определение заключает petitio principii, так как я вижу цифру 1 в первой части и изображенное буквами слово «один» (Un) во второй части равенства.

Как бы то ни было, Бурали-Форти исходит из этого определения и после коротких вычислений приходит к уравнению (27)

1eNO

которое дает нам понять, что «один» есть число.

Так как нам теперь приходится иметь дело с определениями простых чисел, то мы напомним, что Кутюра также определил 0 и 1.

Что такое нуль? Это число элементов нулевого класса. А что такое нулевой класс? Это класс, который не содержит никакого элемента.

Определять нуль при помощи нулевого класса, а нулевой класс при помощи термина «никакой» — это значит поистине злоупотреблять богатством языка; поэтому Кутюра ввел усовершенствование в свое определение, написав:

1 = iL:jx = L. Й . L = (xe jx),

что обозначает: нуль есть число предметов, удовлетворяющих такому условию, которое никогда не выполняется.

Но так как «никогда» обозначает «ни в одном случае», то я не вижу значительного успеха в этой замене.

Спешу прибавить, что определение, которое Кутюра дает числу 1, более удовлетворительно.

«Один, — говорит он, — в сущности, есть число элементов класса, два любых элемента коего тождественны».

Это определение более удовлетворительно, как я сказал, в том смысле, что для определения понятия 1 автор не пользуется словом «один». Но зато он пользуется словом «два». И я боюсь, что если спросить у Кутюра, что такое «два», то он должен будет в ответе воспользоваться словом «один».

VIII

Вернемся к мемуару Бурали-Форти. Я сказал, что его заключения прямо противоположны выводам Кантора. Но однажды меня посетил Адамар. Разговор коснулся этой антиномии.

— Не кажется ли вам, — сказал я, — что рассуждение Бурали-Форти безупречно?
Нет, напротив, я не вижу в нем никаких возражений Кантору. Кроме того, Бурали-Форти не имел права говорить о совокупности всех порядковых чисел.
Простите, он имел это право, потому что всегда мог написать;

W = T '(No,e>).

— Я хотел бы знать, кто бы мог ему в этом воспрепятствовать, и можно ли сказать, что предмет не существует, если его назвали W?

Мои старания были тщетны, убедить Адамара я не мог (противоположное было бы, впрочем, очень прискорбно, так как он был прав). Потому ли это было, что я не говорил достаточно красноречиво на языке Пеано? Возможно; но, между нами говоря, я этого не думаю.

Таким образом, несмотря на весь этот пасиграфический аппарат, вопрос не был разрешен. Что это доказывает? Когда вопрос идет только о том, чтобы доказать, что один есть число, пасиграфия достаточна; но если представляется затруднение, если возникает антиномия, требующая разрешения, то пасиграфия становится бессильной.

(1) Чудовищная девяти головая змея, которая, как говорят древнегреческие мнфы жила в Лернейском болоте. На месте отрубленных голов у нее вырастали новые, — Прим. ред.

(2) Имеется в виду не действительный спор между ними, который был бы невозможен, поскольку они жили в разное время, а противопоставление взглядов Лейбница и Канта на математику. Лейбниц считал, что все математические науки можно воплотить в некотором универсальном логическом исчислении, Кант же утверждал, что математические положения могут доказываться только путем обращения к наглядному представлению, которое дается априорными формами чувственности. — Прим. ред.

(3) Аргумент, основанный на выводе из положения, которое само требует доказательства, — Прим. ред.


Переглядів: 69

Меню

Пошук


Календар

«  Ноябрь 2021  »
ПнВтСрЧтПтСбНд
1234567
891011121314
15161718192021
22232425262728
2930

Реклама



Статистика


 

TOP.GE
HotLog Business-Key Top Sites