Сжигание газов производится в топочной камере, куда горючая смесь подается через горелки. В топочном пространстве в результате сложных физико-химических процессов образуется струя горящего газа, называемая факелом.
В зависимости от способа подачи воздуха, необходимого для горения, возможны следующие виды сжигания газов:
горение однородной газовой смеси, когда сжигается предварительно подготовленная горючая газовая смесь;
диффузионное горение газов, когда газ и воздух подаются раздельно;
горение смеси газов с недостаточным количеством воздуха, когда газ подается в смеси с воздухом, но количество последнего недостаточно для полного сгорания.
В однородной предварительной перемешанной смеси интенсивность горения зависит только от кинетики самих химических реакций, поэтому такой вид горения называют кинетическим.
Горение однородной газовой смеси происходит благодаря распространению пламени в горючей смеси, непрерывно поступающей в топочную камеру. В зависимости от характера движения горючей смеси различают ламинарное горение и турбулентное горение. Вначале рассмотрим ламинарное горение.
В горелку, расположенную вертикально, во избежание искривления факела подается однородная смесь. При ламинарном движении смеси скорость ее движения распределяется в горелке по параболе. Аналогичное распределение скорости сохраняется и на выходе из горелки: у стенок горелки скорость очень мала, далее она возрастает, достигая максимального значения на оси горелки.
При зажигании в устье горелки вблизи ее обреза в точках, где скорость потока равна скорости нормального распространения пламени Un, пламя держится устойчиво, образуя зажигающее кольцо, обеспечивающее непрерывное зажигание поступающей смеси по периферии струи. У стенок горелки, где скорость смеси менее чем Un, пламя не может проникнуть в горелку, так как вследствие теплоотдачи через стенки скорость распространения пламени уменьшается и становится меньше скорости струи в этом месте.
Кольцевая зона зажигания образуется естественно в результате замедленного движения на периферии горелки и диффузии горючего газа из потока наружу.
Пламя в процессе распространения от периферии к центру одновременно относится потоком, и в результате этого достигает оси струи на некотором расстоянии от устья горелки, образуя конусообразный факел. Тонкая зона горения, образующая фронт пламени, обычно имеет яркоголубой цвет, благодаря чему в пространстве факел четко выделяется.
Чем больше скорость распространения пламени и меньше скорость потока W, тем короче факел, и, наоборот, чем меньше Un и больше W, тем длиннее факел. При данной скорости выхода смеси из горелки длина факела зависит от скорости распространения пламени, т. е. от природы сжигаемого газа, его концентрации в смеси и температуры газовоздушной смеси. С увеличением диаметра горелки длина факела увеличивается.
Таким образом, горение протекает по поверхности конусообразного факела, причем глубина зоны горения составляет десятые доли миллиметра, основной же объем факела остается инертным.
Если в смеси имеется избыток горючего (α<1), то за счет воздуха, содержащегося в смеси в голубом конусе, сгорает лишь часть горючего газа. Избыток газа, пройдя зону горения, смешиваясь с воздухом окружающей атмосферы, сгорает, образуя вторичное пламя факела вблизи голубого конуса. При α>1 все количество газа сгорает в голубом конусе факела.
Фронт пламени однородной смеси принимает устойчивое положение по конусообразной поверхности, в каждой точке которой нормальная к ней слагающая Wn скорости движения газа равняется нормальной скорости распространения пламени Un.
(14.1) |
В формуле:
W — местная скорость потока;
φ — угол между направлением внешней нормали к фронту пламени и местной скоростью потока.
Из соотношения (14.1) видно, что скорость струи может значительно превышать Un, не вызывая срыва горения. Но W не должна быть меньше Un во избежание устремления пламени в горелку.
Если бы горючая смесь находилась в покое, то из произвольной точки фронта пламя за некоторое время Δτ переместилось бы внутрь факела по нормали к поверхности фронта на расстояние Un·Δτ. Но смесь движется и за это время пламя относится по вертикали на расстояние W·Δτ. Соответственно каждая последующая равновесная точка фронта пламени смещается все глубже и выше до достижения оси факела на определенном удалении от устья горелки. Совокупность таких равновесных точек зоны горения в потоке образует коническую поверхность факела, опирающегося на обрез круглой горелки.
Опыты показывают, что, ослабляя эффективность действия зажигающего кольца ускорением течения окружающей среды вдоль внешней поверхности горелки, можно перемещать факел или совсем оторвать его от горелки и погасить. Напротив, при неизменных условиях течения на периферии можно увеличить скорость течения средней части струи на выходе из горелки или среды в области верхней части конуса, не нарушая устойчивости факела. Следовательно, для образования устойчивого факела в периферийной нижней части конуса, опирающейся на горелку, необходимо соблюдение условия равновесия W=-Un.
Условие равновесия по соотношению дает связь между скоростью перемещения элемента фронта пламени и скоростью набегающего потока смеси в факеле, находящемся в устойчивом состоянии за счет наличия зажигающего кольца.
Стабилизация ламинарного факела зажигающим кольцом осуществляется в пограничном слое потока, в котором создаются благоприятные гидродинамические и тепловые условия, при которых пламя может существовать устойчиво.
С увеличением скорости истечения смеси без нарушения условия W=-Un на периферии горелки положение фронта факела согласно (14.1) будет сохранено за счет увеличения высоты голубого конуса, так как при этом увеличивается угол φ. Дальнейшее увеличение скорости истечения выше некоторого значения приводит к отрыву и погасанию факела. В зависимости от природы газа и состава смеси существует верхний предел устойчивости пламени, т. е. максимальная скорость истечения, превышение которой приводит к отрыву пламени.
Таким образом, устойчивость зажигания факела обусловливается образованием зажигающего кольца вне горелки, а проникновению пламени внутрь горелки препятствует кольцевая зона охлаждающего действия стенок у края горелки. Следовательно, для случая отрыва существенной является обстановка на выходе из горелки, а для случая проскока - обстановка внутри трубки горелки. Проскок и отрыв пламени происходят из-за нарушения условия W=-Un вблизи устья горелки.
Устойчивость факела определяется естественной или искусственной стабилизацией его корневой части.
Форма факела зависит от геометрического расположения очага зажигания, а его размеры определяются размером горелки и устойчивым положением равновесия между перемещением элемента фронта пламени и скоростью набегающего потока.
Метод сжигания однородной газовоздушной смеси в ламинарном потоке не имеет промышленного распространения и применяется лишь в небольших нагревательных приборах.
Для интенсификации горения сжигание газов производится при больших скоростях газового потока и, следовательно, при турбулентном режиме его движения.
Атмосферные горелки с развитием факела в открытой атмосфере работают малоустойчиво, так как в них нельзя осуществить горение при больших скоростях истечения смеси. Появляющийся спутный поток охлаждает зажигающее кольцо, оно теряет поджигающую способность и факел погасает.
Для стабилизации турбулентного факела необходимо обеспечить его устойчивое зажигание. Последнее достигается сжиганием газа в пространстве, заполненном накаленными продуктами сгорания. В процессе турбулентного расширения струи по мере увлечения топочных газов горючая смесь нагревается и одновременно разбавляется продуктами сгорания. Согласно теории неизотермической струи нагрев струи происходит в турбулентном пограничном слое, в ядре же постоянных скоростей начального участка температура остается неизменной и равной температуре истечения. Нагрев происходит наиболее интенсивно по периферии струи и по мере удаления от устья горелки распространяется внутрь струи. По мере приближения к внешней границе струи температура повышается, а концентрация горючей смеси падает. От воспламенившихся периферийных слоев турбулентной теплопроводностью тепло передается соседним слоям, вызывая их последовательное воспламенение. Нагреву соседних слоев способствует также турбулентная диффузия.
Турбулентный режим движения также влияет на структуру поверхности горения. Под воздействием турбулентных пульсации фронт пламени искривляется, размывается, разрывается на отдельные очаги и непрерывно видоизменяется, но конусообразная форма сохраняется так как зажигание происходит по периферии струи. Поэтому и в этом случае значительная часть объема факела остается инертной, неиспользованной.
В конусе, ограниченном поверхностью воспламенения, движется еще не воспламененная смесь.
В случае, когда через горелку подается газ, не содержащий в себе кислорода, при его поджигании горение происходит за счет потребления кислорода окружающего воздуха, поступающего посредством диффузии. Так как в данном случае газ и воздух подаются раздельно, а горение происходит в процессе их взаимной диффузии, причем скорость горения определяется интенсивностью процесса смешения, то подобное горение называют диффузионным.
В зависимости от характера движения различают ламинарное диффузионное горение и турбулентное диффузионное горение.
Ламинарное диффузионное горение происходит при ламинарном режиме движения газа, вытекающего из горелки. Кислород, необходимый для горения, поступает из окружающей атмосферы и смешивается с горючим газом. Получаемая в результате молекулярной диффузии смесь при поджигании образует факел, который при круглых горелках принимает конусообразную форму, так как по мере движения газ расходуется на горение и зона горения перемещается к оси струи, доходя до нее в вершине конуса.
Ламинарный диффузионный факел поддерживается стационарно, так же как при горении однородной смеси, за счет существования кольцевой зоны зажигания. В случае, когда в горелку подается только газ, а окружающая среда находится в покое, у кромки горелки газ диффундирует наружу и, смешиваясь с воздухом, образует смесь, которая в зоне малых скоростей устойчиво сгорает. Благодаря образованию более богатой смеси в области зажигающего кольца и сгоранию ее в зоне меньших скоростей диффузионный факел обладает большей устойчивостью зажигания по сравнению с факелом однородной смеси.
При диффузионном горении также наблюдается явление отрыва факела. Но проскок пламени в горелку исключается из-за раздельной подачи горючего газа и воздуха.
Зона устойчивого горения устанавливается по поверхности, где поступающие молекулярной диффузией количества газа и кислорода находятся в стехиометрическом соотношении для полного горения. Это утверждение следует из того, что в зоне горения не может быть ни избытка газа, ни избытка кислорода, так как в противном случае она не может занять устойчивого положения.
Можно представить, что ламинарное диффузионное горение совершается следующим образом. Газ, вытекая из горелки, молекулярной диффузией смешивается с кислородом воздуха, полученная горючая смесь при поджигании образует достаточно резко очерченный конусообразный светящийся факел. Фронт пламени устанавливается по поверхности, где смесь образуется в пропорции, теоретически необходимой для горения. В зону горения изнутри поступает газовое топливо в виде различных основных и промежуточных продуктов, а снаружи — кислород. Образующаяся горючая смесь воспламеняется за счет тепла, распространяющегося от фронта пламени. Химическое превращение совершается в узкой светящейся зоне фронта горения в смеси, которая значительно разбавлена горячими продуктами сгорания и тем самым сильно нагрета, но в которой концентрации горючих элементов и окислителя малы. В таких условиях химическое реагирование протекает наиболее интенсивно. Толщина зоны горения мала — не превышает 1 мм. Образующиеся продукты сгорания диффундируют как в окружающее пространство, так и внутрь факела. Поверхность пламени отделяет окислительную область вне факела, в которой имеются кислород и продукты сгорания и нет горючего, от восстановительной области внутри факела, в которой нет кислорода, но есть газ и продукты сгорания.
Благодаря большой скорости химической реакции поступающие в зону горения газ и кислород практически мгновенно сгорают, в результате чего в зоне горения их концентрации равны нулю, а температура равна адиабатической. Большая скорость химической реакции обусловливает малую толщину пламени и позволяет рассматривать ее как геометрическую поверхность, с одной стороны которой находится смесь воздуха с продуктами сгорания, а с другой — смесь газа с продуктами сгорания.
С увеличением теплоты сгорания газа в результате увеличения количества необходимого для горения воздуха длина факела увеличивается.
В заключение следует отметить особенность диффузионного вида горения, связанную с наличием химической неполноты горения. В диффузионном ламинарном пламени температура достигает максимального значения в зоне горения. Вытекающий из горелки газ до поступления в зону горения нагревается за счет тепла, распространяющегося от пламени как теплопроводностью, так и посредством диффузии горячих продуктов сгорания. Некоторые газы, как, например, водород и окись углерода являются теплостойкими и при нагреве до температур 2500—3000 К сохраняют свою молекулярную структуру. Горение теплостойких газов происходит в прозрачном факеле бледноголубого цвета.
Газы, содержащие углеводородные соединения, являются тепло нестойкими. В случае сжигания этих газов нагрев в восстановительной зоне в отсутствие кислорода вызывает их разложение с образованием сажи и водорода. Разложение углеводородосодержащих газов протекает тем интенсивнее, чем выше температура, при этом одновременно возрастает доля образующихся тяжелых, сложных, трудно сжигаемых углеводородов. Например, разложение метана начинается при температуре около 680—700°С. При нагреве без доступа воздуха до 950°С разлагается 26% метана, а при нагреве до 1150°С — 90%.
Находящиеся в пламени мелкодисперсные частицы сажи и свободного углерода, размеры которых чрезвычайно малы и составляют десятые доли микрона, раскалившись за счет выделившегося при горении тепла, излучают более или менее яркий свет, вызывая свечение пламени.
Диффузионное горение частиц протекает сравнительно медленно, в результате чего часть свободного углерода и тяжелых углеводородов не успевает сгорать и в виде сажи покидает факел. Наличие углерода согласно равновесию С+СО2==2СО вызывает образование СО. Количество углерода, тяжелых углеводородов и СО, присутствующих в продуктах сгорания, определяет величину химического недожога.
Интенсивность диффузионного сжигания зависит от интенсивности смесеобразования. Так как массообмен при турбулентном течении происходит во много раз интенсивнее, чем при ламинарном режиме, то для промышленных целей более важным является способ турбулентного диффузионного сжигания не перемешанных газов.
Турбулентное диффузионное сжигание производится раздельной подачей газа и воздуха через горелки в камеру сгорания в среду горячих продуктов сгорания. Воздух может подаваться через те же горелки или помимо них через отдельные сопла.
Так как турбулентная струя обладает свойством автомодельности, а коэффициент турбулентной диффузии пропорционален скорости истечения и диаметру сопла, то положение зоны воспламенения и горения, определяемое как геометрическое место точек, где образуется смесь стехиометрического состава, при горелке данного размера не должно зависеть от скорости истечения. Равно и длина зоны воспламенения не должна зависеть от скорости истечения. При подсчете в калибрах диаметра при данном топливе она должна быть одинаковой для горелок различных размеров. При этом остается лишь зависимость относительной длины зоны воспламенения от стехиометрического числа и концентрации кислорода в окружающей среде.
Длина зоны воспламенения диффузионного факела тем больше, чем больше теплота сгорания газа, так как для сжигания единицы массы газа должно поступить больше кислорода. Чем меньше содержание кислорода в окружающей среде, тем длиннее зона воспламенения. Напротив, при повышении концентрации кислорода в окружающей среде длина зоны воспламенения факела уменьшается.
Эти положения, полученные из теоретических исследований, подтвердились опытами.
Выделяющееся при химическом реагировании тепло посредством турбулентной теплопроводности и диффузии горячих продуктов сгорания передается образующейся горючей смеси, обеспечивая ее воспламенение и распространение пламени. Следовательно, положение зоны горения определяется условиями турбулентной диффузии, а скорость горения — скоростью последней. Дополнительным условием устойчивого горения является наличие достаточной скорости распространения пламени, так как в противном случае произойдет срыв пламени.
Зажигание турбулентного диффузионного факела происходит аналогично зажиганию при турбулентном горении однородной газовой смеси. Турбулентная струя газа при своем распространении в топочном пространстве вместе с воздухом увлекает также и горячие продукты сгорания, в результате чего смесь нагревается и воспламеняется. Зажигание диффузионного факела можно усилить организацией теплового, газодинамического и концентрационного режимов таким образом, чтобы повысить интенсивность тепловыделения и, напротив, понизить интенсивность теплоотвода из зоны реагирования в области корня факела. В частности могут быть применены стабилизаторы различных типов.
Общая длина факела Lф превышает длину зоны воспламенения (Lз.в) на длину участка зоны догорания Lд. В этой зоне протекает догорание множества молей, на которые факел раздроблен под действием турбулентных пульсации. В них процесс смешения происходит в основном за счет молекулярной диффузии, которая протекает медленно. При этом концентрации горючего газа и кислорода в зоне догорания малы. В этих условиях горение протекает сравнительно медленно, обусловливая значительную длину зоны догорания.
Длина зоны догорания равняется протяженности перемещения молей за время τд их выгорания.
Опытами установлено, что с повышением начальной температуры газа длина факела заметно сокращается. Это объясняется влиянием температуры на коэффициент молекулярной диффузии и на кинематическую вязкость.
На длину факела сильное влияние оказывает конструкция горелочного устройства и способ организации процесса сжигания в топках парогенераторов и в камерах сгорания различного назначения.
В заключение следует отметить, что из-за переноса масс горючего, продуктов сгорания и воздуха посредством перемещения множества отдельных молей фронт горения в турбулентном факеле получается волнистым, размытым, разорванным на отдельные части и слабо устойчивым. Кроме того, турбулентному диффузионному факелу, также как и ламинарному диффузионному факелу, по тем же причинам присуще образование химической неполноты сгорания.
Рассмотрим горение смеси, содержащей воздух в количестве, недостаточном для полного сгорания. В этом случае через горелку подается газ в смеси с воздухом, количество которого меньше, чем требуется для полного горения.
По выходе из горелки часть газа сгорает, соединяясь с кислородом, содержащимся в смеси, образуя у устья горелки конусообразный фронт пламени, положение которого определяется по законам образования и горения однородной газовоздушной смеси. Остаток несгоревшего газа вместе с продуктами сгорания пересекает зону горения и сгорает после смешения с воздухом из окружающего пространства, образуя вторую зону горения, положение которой подчиняется закону диффузионного горения. Таким образом, пространство, занимаемое факелом, делится двумя зонами горения на три области. В области факела, расположенной между горелкой и первым фронтом пламени, движется еще не начавшая гореть смесь газа и воздуха. В области между двумя зонами горения находится несгоревший в первом фронте пламени газ в смеси с продуктами сгорания. И, наконец, вне диффузионной зоны горения находится смесь продуктов горения с воздухом.
Длина зоны горения однородной газовоздушной смеси и зоны диффузионного горения зависит от содержания воздуха в первоначальной смеси, поступающей в горелку. С уменьшением содержания воздуха длина зоны горения однородной смеси уменьшается, а длина зоны диффузионного горения увеличивается до предельного значения, соответствующего чисто диффузионному горению, когда первый фронт пламени исчезает. Напротив, с увеличением содержания воздуха в смеси зона диффузионного горения уменьшается и при подаче стехиометрической смеси исчезает и остается только зона горения однородной газовоздушой смеси.
Газ до вступления в первую зону горения подвергается нагреву за счет излучения из зоны горения и диффузии продуктов сгорания. В случае сжигания газов, содержащих углеводородные соединения, этот нагрев сопровождается двумя основными процессами: процессом окисления, который начинается при сравнительно низких температурах и процессом термического расщепления. Процесс окисления благоприятствует успешному ходу горения. Процесс же расщепления при высоких температурах обусловливает образование тяжелых углеводородов, осложняет процесс горения и вызывает неполноту горения. В процессе окисления образуются альдегиды, которые или окисляются в формальдегиды при наличии кислорода, или расщепляются в его отсутствии. При наличии достаточного количества воздуха формальдегиды сгорают в СО2 и H2O. В случае же отсутствия воздуха формальдегид разлагается на CO и Н2. Последние в дальнейшем при наличии воздуха сгорают по характерным для них цепным реакциям, процесс завершается без образования продуктов неполного горения. В случае недостаточного количества кислорода или при неравномерном его распределении в газовозушной смеси имеет место расщепление альдегидов или даже исходного газа с образованием тяжелых углеводородов, обусловливающих образование сажи и появление химической неполноты сгорания. Таким образом, для протекания полного горения решающее значение имеет смесеобразование. В случае раздельной подачи в топочное пространство газа и воздуха, необходимого для горения, т. е. в случае диффузионного горения, имеет место максимальная химическая неполнота горения. При подаче совместно с газом некоторого количества воздуха неполнота горения, которая в этом случае образуется в зоне диффузионного горения, будет уменьшена. Хорошо перемешанная газовоздушная смесь, в которой содержится достаточное для полного сгорания количество воздуха, может быть сожжена без образования продуктов неполного горения.
В открытом факеле горелок атмосферного типа с зажиганием от естественного зажигающего кольца процесс горения может протекать устойчиво, т. е. со стабилизацией факела в определенном объеме при установившемся режиме подачи горючей смеси и в нешироких пределах скоростей истечения смеси из горелки. При малых скоростях истечения возможен проскок пламени в горелку, а при больших скоростях отрыв пламени от горелки и его погасание.
Условием устойчивости ламинарного горения, осуществляемого обычно в атмосферных горелках, является равенство W=—Un на периферии основания факела в зоне зажигающего кольца. В факеле однородной смеси при W<Un возможен проскок пламени в горелку. Предел минимальной скорости в горелке, ниже которой происходит проскок пламени, называется нижним пределом устойчивости горения по скорости. Поскольку горение однородной газовой смеси происходит за счет нормального распространения пламени, устойчивое пламя можно получить при сжигании смесей, которые находятся в концентрационных пределах воспламенения. Если содержание горючего газа в смеси выше верхнего предела, голубой конус не образуется и имеет место чисто диффузионное горение. Если же содержание газа в смеси меньше нижнего предела, то горение невозможно. При скоростях потока выше верхнего предела устойчивости пламя отрывается и гаснет.
Как проскок, так и отрыв пламени нарушают нормальную работу горелки и могут быть причиной аварии. Кроме того, эти явления ограничивают производительность горелки по минимальному и максимальному пределу. Для обеспечения нормального протекания горения процесс следует вести в области устойчивого горения.
Рис. 14.1. Пределы устойчивого горения в горелках атмосферного типа.
W – скорость истечения струи газовоздушной смеси; α - коэффициент избытка воздуха. |
Стабилизирующую способность горелок различных конструкций по пределам устойчивого горения, нарушаемым проскоком или отрывом пламени, выявляют экспериментально. Эту характеристику обычно представляют в виде графика зависимости нижней и верхней предельной скорости истечения смеси от коэффициента избытка воздуха (рис. 14.1).
В изолированных, как и совместных параллельных и последовательных реакциях, исходные вещества вступают в химические соединения, и образуют новые продукты в определенных, так называемых стехиометрических соотношениях (закон кратных отношений Дальтона).
Согласно этому закону горючие составляющие топлива вступают в химическое реагирование с кислородом в определенном количественном соотношении. Расход кислорода и количество образующихся продуктов сгорания определяются из стехиометрических уравнений горения, записанных для одного моля каждого горючего составляющего. Относя эти уравнения к 1 кг горючего и выразив газообразные вещества в объемных единицах, делением их массовых количеств на значения плотностей, получим количество кислорода и выход продуктов сгорания на 1 кг каждой составляющей горючей массы топлива в м3 при давлении 0,1013 МПа (760 мм рт. ст.) и 0°С.
Для углерода: С+O2=СO2.
12,01 кг С+32 кг O2=44,01 кг СO2; |
(14.2) |
1 кг С+1,866 м3 O2=1,866 м3 СО2. |
Для серы: S+O2=SO2.
32,06 кг S+32 кг О2=64,06 кг SO2; |
(14.3) |
1 кг S+0,7 м3 O2=0,7 м3 SO2. |
Для водорода: 2Н2+О2=2Н2О.
4,032 кг Н2+32 кг O2=36,032 кг Н2O; |
(14.4) |
1 кг Н2+5,55 м3 O2=9 кг Н2О. |
Суммируя затраты кислорода на сжигание горючих элементов, содержащихся в 1 кг топлива, и вычитая количество кислорода топлива, получим теоретически необходимое количество кислорода для сжигания 1 кг твердого или жидкого топлива м3/кг:
(14.5) |
В формуле: Cр; Sрор+к; Hр; Ор — соответственно массовое содержание углерода, серы, водорода и кислорода в топливе, %; — плотность кислорода, кг/м3.
В воздухе содержится кислорода примерно 21% по объему, поэтому теоретически необходимое количество воздуха для горения VO, м3/кг, т. е. количество воздуха, которое необходимо для полного сжигания 1 кг топлива при условии, что весь содержащийся в нем кислород прореагирует, составляет:
(14.6) |
(14.7) |
В процессе горения по мере расходования топлива и кислорода и уменьшения их действующих концентраций выгорание все более замедляется. В камерах сгорания парогенераторов условия реагирования ухудшаются также из-за недостаточно совершенного перемешивания вступающих в процесс горения больших масс топлива и воздуха. Поэтому воздух для горения подают больше его теоретически необходимого количества.
Отношение количества воздуха, действительно поступившего в топку Vв, к теоретически необходимому количеству называют коэффициентом избытка воздуха:
(14.8) |
Для вновь проектируемых парогенераторов величину αт выбирают в зависимости от вида сжигаемого топлива, метода сжигания и конструкции топки. Для пылеугольных топок по условиям достижения большего значения к. п. д. и интенсификации процесса горения оптимальными являются αт=1,2—1,25, при этом нижний предел относится к бурым и каменным углям, а верхний — к тощим углям и антрацитам. При размоле бурых и каменных углей в молотковых мельницах рекомендуется выбрать верхний предел, т. е. αт=1,25. При жидком шлакоудалении из-за повышения температурного уровня и уменьшения присосов αт может быть снижен для однокамерных топок до 1,2; двухкамерных и циклонных топок — до 1,1. При сжигании природных газов и мазута в агрегатах, снабженных автоматикой горения и регуляторами давления в газопроводе, αт может быть снижен до 1,05.
На действующих парогенераторах балансовыми испытаниями при различных нагрузках определяется оптимальное значение αт, при котором суммарная величина потерь тепла от механической и химической неполноты сгорания топлива и потерь тепла с уходящими газами окажется минимальной.
Объемы и масса воздуха и продуктов сгорания при сжигании газового топлива рассчитываются по стехиометрическим уравнениям сгорания отдельных горючих составляющих.
Теоретическое количество воздуха V0, м3/м3, определяется как суммарный его расход на сжигание горючих 1 м3 сухого газового топлива при α=1 по формуле:
(14.9) |
При отсутствии данных о составе непредельных углеводородов принимается, что они состоят из С2Н4.
Обычно в топочных камерах поддерживается небольшое разрежение для предотвращения выбивания газов в помещение котельной. В последующих за топкой газоходах парогенератора устанавливается разрежение, превышающее разрежение в топке на величину сопротивления, рассматриваемого и предшествующих газоходов. Через неплотности в металлической обшивке и обмуровке парогенератора, через лазы и гляделки происходит присос атмосферного воздуха, в газоходы находящиеся под разрежением, увеличивающий объем продуктов сгорания, протекающих в них.
Расчет объемов продуктов сгорания топлива производится для выбранных значений αт и коэффициентов избытка воздуха последующих газоходов, определяемых суммированием с αт присосов воздуха в рассматриваемом и предыдущих газоходах, выраженных в долях от V0. Предварительно по формулам определяется теоретический объем продуктов сгорания, а затем для каждого участка газового тракта в соответствии с величиной присоса определяется общий объем продуктов сгорания и, наконец, по формуле - объем водяных паров.
В осваиваемых в последнее время газоплотных парогенераторах присосы воздуха отсутствуют. Объем газов по газоходам остается одинаковым и рассчитывается по коэффициенту избытка воздуха в топке.
Приведем формулы для расчета объема продуктов сгорания газообразного топлива при α=1.
Теоретический объем азота, м3/м3,
(14.10) |
Объем трехатомных газов, м3/м3,
(14.11) |
(14.12) |
Масса продуктов сгорания, кг/м3,
(14.13) |
(14.14) |
Коэффициент избытка воздуха определяется газовым анализом проб продуктов сгорания, отбираемых из газоходов, с последующим расчетом по приводным ниже формулам.
Теоретически необходимый объем воздуха можно выразить как разность между действительно поданным объемом воздуха на 1 кг топлива и объемом избыточного воздуха и представить его в виде
(14.15) |
Эксплуатационный контроль за поддержанием необходимого избытка воздуха в топке и за плотностью газоходов более правильно вести по содержанию кислорода в продуктах сгорания, для чего применяются автоматические кислородомеры.
Газовые горелки могут быть классифицированы по следующим признакам:
по длине образующегося факела на длиннопламенные и короткопламенные;
по светимости пламени на светящийся или слабосветящийся факел;
по теплоте сгорания сжигаемого газа на горелки для высококалорийных и низкокалорийных газов;
по давлению перед горелкой на низко- и высоконапорные;
по количеству подводящих трубопроводов на одно- и двухпроводные и т. д.
Одним из существенных признаков является способ смешения сжигаемого газа с воздухом, необходимым для горения. По этому признаку горелки можно разделить на следующие три типа.
Горелки без предварительного смешения газа с воздухом. Газ и воздух, в необходимом для горения количестве, подаются раздельно через соответствующие каналы горелки. Горючая смесь образуется в факеле в процессе турбулентного смешения газа и воздуха после выхода их из горелки.
Для примера в качестве горелки такого типа можно привести трубчатую горелку для низкокалорийных газов (рис. 14.2). Газ поступает через газовый коллектор и присоединенные к нему трубы, а воздух через противоположный коллектор в межтрубное пространство. Смешение происходит в струйных потоках на выходе из труб.
Рис. 14.2. Трубчатые горелки для низкокалорийных газов
|
Эти горелки применяют для сжигания низкокалорийных газов в больших количествах и в печной технике, когда нужно иметь растянутый светящийся факел с более равномерной теплоотдачей по длине рабочего пространства печи.
Горелки предварительного смешения. Горелки, работающие по принципу кинетического сжигания, применяют в случаях, когда требуется сжигать газ с высоким тепловым напряжением объема и сечения камеры порядка (10—40) • 103 кВт/м3 к (50—80) • 103 кВт/м2 с минимальным химическим недожогом и с коротким слабосветящимся пламенем. Предварительное смешение осуществляется в смесителях, из которых подготовленная смесь поступает в горелку. К этому типу относятся туннельные и другие типы горелок однородной газовоздушной смеси, получаемой предварительным смешением газа с воздухом в смесителях различной конструкции.
В промышленности широкое распространение получили инжекционные горелки туннельного типа (рис. 14.3), которые обеспечивают авторегулирование постоянного соотношения расходов газа и воздуха и допускают сжигание запыленных газов. Горелки более термостойки и обладают повышенной пропускной способностью при малых сопротивлениях.
Рис. 14.3. Инжекционные горелки с керамическим туннельным каналом
а – однопроводная горелка с одноканальным туннелем; б – двухпроводная горелка с могоканальным туннелем |
При высоком давлении сжигаемого газа применяют одно проводные горелки (рис. 14.3, а) с эжекцией воздуха из атмосферы, а при сжигании газа низкого давления — двухпроводные горелки (рис. 14.3, б) с принудительной подачей воздуха. Широкое распространение получили также однопроводные инжекционные горелки, в которых цилиндрическая камера смешения заканчивается не керамическим каналом, а металлическим участком диффузор — конфузор.
Горелки с частичным смешением. Эти горелки снабжены укороченными смесителями, в которых происходит частичное смешение. Смешение продолжается и завершается в факеле в процессе горения.
Горелки, работающие по этому принципу, широко применяются в энергетике для сжигания природные газов.
В горелках с частичным смешением для низкокалорийных газов, в частности в горелке ВНИИМТ для доменного газа (рис. 14.4), из-за соизмеримых расходов газов и воздуха газы и воздух подаются чередующимися плоскими потоками через каналы в форкамеру, в каналах которой начинается смешение и горение. Процесс смешения и горения продолжается и завершается в выходных каналах. Сечение туннеля горелки определяется по количеству продуктов сгорания и скорости их, принимаемой в пределах 30—40 м/с.
Рис. 14.4. Горелка для доменного газа
|